simulations.pendulum.description
simulations.pendulum.explanation.basicPhysics
simulations.pendulum.theory.introduction
simulations.pendulum.theory.energyConservation.description
simulations.pendulum.theory.colorExplanation
simulations.pendulum.theory.periodRelation
simulations.pendulum.formulaDerivation.periodFormula.step1
Ft = -mg sin θ
simulations.pendulum.formulaDerivation.periodFormula.step2
mat = -mg sin θ
at = -g sin θ
simulations.pendulum.formulaDerivation.periodFormula.step3
at = L·(d²θ/dt²)
L·(d²θ/dt²) = -g sin θ
d²θ/dt² = -(g/L) sin θ
simulations.pendulum.formulaDerivation.periodFormula.step4
sin θ ≈ θ (当θ很小时)
d²θ/dt² ≈ -(g/L)·θ
simulations.pendulum.formulaDerivation.periodFormula.step5
θ = A·cos(ωt)
ω = √(g/L)
T = 2π/ω = 2π·√(L/g)
simulations.pendulum.formulaDerivation.periodFormula.conclusion
simulations.pendulum.formulaDerivation.smallVsLargeAngle.explanation1
T = 2π·√(L/g)·(1 + (1/16)·θ0² + ...)
simulations.pendulum.formulaDerivation.smallVsLargeAngle.explanation2
simulations.pendulum.formulaDerivation.smallVsLargeAngle.table.angle | simulations.pendulum.formulaDerivation.smallVsLargeAngle.table.error | simulations.pendulum.formulaDerivation.smallVsLargeAngle.table.actualPeriod |
---|---|---|
5° | < 0.1% | ≈ T0 |
10° | ≈ 0.5% | ≈ 1.005·T0 |
30° | ≈ 4.3% | ≈ 1.043·T0 |
90° | ≈ 18% | ≈ 1.18·T0 |
simulations.pendulum.formulaDerivation.smallVsLargeAngle.explanation3
simulations.pendulum.formulaDerivation.applications.explanation1
simulations.pendulum.formulaDerivation.applications.clockExplanation
simulations.pendulum.formulaDerivation.applications.gravityExplanation
simulations.pendulum.formulaDerivation.applications.explanation2